
SANDIA REPORT
SAND2013-7100
Unlimited Release
Printed August 2013

Application Note:
Using Open Source Schematic
Capture Tools With XyceTM

Thomas V. Russo

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
EP

ARTMENT OF ENERG
Y

• •U
N

ITED

STATES OF AM

ER
IC

A

2

SAND2013-7100
Unlimited Release

Printed August 2013

Application Note:
Using Open Source Schematic Capture Tools With

XyceTM

Thomas V. Russo
Electrical Models and Simulation

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87185-1177

Abstract

The development of the XyceTM Parallel Electronic Simulator has focused entirely on the
creation of a fast, scalable simulation tool, and has not included any schematic capture
or data visualization tools. This application note will describe how to use the open source
schematic capture tool gschem and its associated netlist creation tool gnetlist to create
basic circuit designs for Xyce, and how to access advanced features of Xyce that are not
directly supported by either gschem or gnetlist.

3

4

Contents

1. Introduction 9

Target Audience . 9

Prerequisites . 10

Obtaining gEDA and friends . 10

Simplified installation on Ubuntu, Debian, Mac OS X and FreeBSD 10

gEDA on CentOS and Red Hat Enterprise Linux . 11

gEDA on Windows . 12

Useful start-up options . 12

Starting gschem . 12

2. A first circuit with gEDA and Xyce 13

Overview . 13

Drawing the circuit . 14

Adding voltage sources and editing attributes . 14

Adding devices . 17

Connecting the devices . 19

Completing the schematic . 20

Adding a Model Card . 22

Generating the netlist . 23

5

Adding analysis and output statements . 24

Simulation with Xyce . 25

Plotting the results . 25

Changing the analysis . 26

Summary . 27

3. Creating hierarchical designs 28

The Common Emitter Amplifier — flat design . 29

Common Emitter Amplifier — hierarchical netlist version . 32

Overview. 32

The Common Emitter Amplifier subcircuit . 33

Creating a symbol for the subcircuit . 35

Drawing the higher level schematic . 38

Summary . 41

4. Accessing Xyce-specific Netlist Features 43

The Nonlinear Resistor Netlist . 43

The nonlinear resistor schematic — workaround version . 45

Patching spice-sdb, and an improved Xyce nonlinear resistor schematic 51

Appendix

A Installing gEDA on Windows . 55

6

List of Figures

2.1 Diode Clipper circuit schematic from Xyce Users’ Guide. 13

2.2 Select Component... dialog box. 15

2.3 Single Attribute Editor dialog box. 15

2.4 Edit Attributes dialog box. 16

2.5 Sources for the Diode Clipper circuit. 17

2.6 Placed components for Diode Clipper circuit. 18

2.7 First two nets added to Diode Clipper circuit. 19

2.8 Remaining nets added to Diode Clipper circuit. 20

2.9 Complete Diode Clipper schematic. 21

2.10 Model component attributes for diode clipper. 22

2.11 DC Sweep plot for diode clipper circuit. 26

3.1 Schematic for flattened common emitter amplifier circuit 29

3.2 Complete schematic for flattened common emitter amplifier circuit 31

3.3 Schematic for the common emitter amplifier subcircuit 33

3.4 First pin added to symbol . 37

3.5 Complete Amplifier symbol . 39

3.6 Common Emitter Amplifier driver and load . 40

4.1 Nonlinear Resistor Netlist . 44

7

4.2 Nonlinear Resistor Top Level Schematic . 46

4.3 Nonlinear Resistor Subcircuit Schematic . 47

4.4 Nonlinear Resistor Subcircuit Schematic . 52

4.5 Nonlinear Resistor Top-Level Schematic . 53

A.1 Selecting Computer Properties . 56

A.2 Advanced System Settings . 57

A.3 Copying the full path . 58

A.4 Navigate to the “lib\gdk-pixbuf-2.0\2.10.0” directory 59

8

1. Introduction

The XyceTM Parallel Electronic Simulator was written at Sandia National Laboratories as
an in-house, custom, high-performance circuit simulator. Development of XyceTM has
been limited to creation of the simulation engine itself, and Xyce does not include any
schematic capture tool or graphical display software.

This note is intended as a basic tutorial for getting started the gEDA tools (http://www.
geda-project.org) to create input for Xyce. We will demonstrate how to use the open
source software gEDA, its schematic capture tool gschem and its associated netlist gener-
ation tool gnetlist to create circuit designs for simulation in Xyce, and how to use these
tools to access Xyce features that are extensions of SPICE generally unsupported by the
tools.

With gEDA’s schematic capture and netlist generation tools, Xyce can become part of a
complete design and simulation workflow that consists entirely of free, open-source tools.

Target Audience

This application note is primarily intended for existing users of Xyce who wish to use
it in conjunction with a schematic capture tool, and who don’t already have a preferred
schematic capture tool.

Users with existing workflows that include another schematic capture tool might prefer to
continue using their familiar tools, which may also be able to create netlists suitable for
use with Xyce. This note does not address the peculiarities of other tools, but some of
the techniques described here may be applicable to other workflows.

Current users of gEDA who are new to Xyce will find most of the material in the early part
of this note of little use, as it is focused on introducing the basic mechanics of schematic
capture with gschem and netlisting with gnetlist. The section on Xyce-specific netlisting
issues will likely be of the most use to such users.

9

http://www.geda-project.org
http://www.geda-project.org

Prerequisites
This application note assumes that you have already downloaded and compiled XyceTM

according to its documentation, that you have installed it in a manner that allows you to
run it directly by typing “Xyce” 1 in the command line, and that you are able to run a basic
netlist using that installed copy of Xyce.

We also assume that you have installed the gnuplot plotting software, as all of our plotting
examples below will use that software. This software is available for all platforms that are
supported by gEDA.

Obtaining gEDA and friends
Building and installing “gEDA” and its component software (sometimes referred to as
“gEDA and friends” or “gaf”) from source is beyond the scope of this note. The gEDA
project has a web site (http://www.geda-project.org) that provides access to gEDA
documentation and downloads, and this should be consulted if you must build gEDA from
source. But many operating systems provide a means of installing gEDA tools through
their package management systems. See http://wiki.geda-project.org/geda:download

for basic download instructions should you require more information than the next sections
provide.

Simplified installation of gEDA and friends is known to be available on Debian, Ubuntu,
and Fedora Linux; Mac OS X; and FreeBSD. A slightly more involved—yet still simple—
install process allows Red Hat Enterprise Linux and CentOS installs. A brief summary
of these systems’ installation process follows. Consult the gEDA download site or your
system’s documentation for details.

Simplified installation on Ubuntu, Debian, Mac OS X
and FreeBSD
On Ubuntu and Debian Linux systems, gEDA may be installed through the system pack-
age manager with:

sudo apt-get install geda

On Fedora Linux systems, gEDA may be installed with:

1Or perhaps “runxyce” if you are a Sandia user who has installed one of our precompiled binary instal-
lations.

10

http://www.geda-project.org
http://wiki.geda-project.org/geda:download

sudo yum install geda-gaf

On Macintosh OS X, the simplest install of gEDA requires a package manager such as
Fink (http://fink.thetis.ig42.org/) or MacPorts (http://www.macports.org/). In-
stallation of these packages is beyond the scope of this document, see their respective
web sites for details. Once the Fink or MacPorts system is installed, gEDA may generally
be installed with a single command. In Fink:

fink install geda-gaf

In MacPorts:

sudo port install geda-gaf

On FreeBSD, gEDA and friends are installed through the ports system. As root:

cd /usr/ports/cad/geda

make install clean

gEDA on CentOS and Red Hat Enterprise Linux
While gEDA and friends are available for CentOS and Red Hat Enterprise Linux sys-
tems, the process involves a few extra steps, as the packages are included in non-default
repositories.

In most cases there are only three steps. The first step is to download an “epel-release”
rpm file that adds repositories, the second is to install that file using “rpm” and the third
is to “yum install geda-gaf”. But since the specific file you need to download depends on
which version of Red Hat Enterprise Linux or CentOS you are running and which proces-
sor you have (32-bit x86 or 64-bit x86 64), we will not enumerate the precise commands
here.

Please see http://pkgs.org/download/geda-gaf for distribution- and platform-specific
installation instructions for these packages. Under each specfic platform link, there is an
“Install Howto” section that gives the exact steps for that platform. These Howto instruc-
tions have been confirmed to work on Sandia Common Operating Environment Red Hat
EL systems, if your system is properly set up.2

2If you receive an error from yum about not being able to download a “repomd.xml” for “epel”, check your
proxy settings. If you require a proxy (as Sandia users do), both http proxy and https proxy environment
variables need to be defined. Sandia RHEL users also need to assure that coe-ssl-interception is installed.
Sandia RHEL users should consult their CSU support if further assistance is needed installing this software.

11

http://fink.thetis.ig42.org/
http://www.macports.org/
http://pkgs.org/download/geda-gaf

gEDA on Windows
Like Xyce, gEDA and friends are designed on and targeted at Unix-like operating systems,
and as such are not as easily installed on Windows. If you require gEDA on Windows,
see Appendix A, which documents the entire process.

Useful start-up options
By default, gschem will not automatically number components as you add them to your
circuit. I have found that it is very helpful to enable autonumbering, but to do so you
must create a start-up file for gschem to read, and add a few options to it. To make this
option apply to all of your gschem runs automatically, put the following text into the file
.gEDA/gschemrc in your home directory.

(load-from-path "auto-uref.scm") ; load the autonumbering script

(add-hook! add-component-hook auto-uref) ; autonumber when adding a component

(add-hook! copy-component-hook auto-uref) ; autonumber when copying a component

If you chose not to create this start-up file, you will have to number each component
you add to a schematic manually, or use the “Autonumber Text” menu entry under the
“Attributes” menu to number them for you after you place them. The remainder of this
document will assume that you have created this start-up file.

Starting gschem

On most systems, running gschem (gEDA’s schematic capture tool) is as simple as typing
“gschem” in a terminal window.

12

2. A first circuit with gEDA
and Xyce

In this chapter we’ll simulate the diode clipper circuit from the XyceTM Users’ Guide[1] by
drawing the circuit in gschem, generating a netlist using gnetlist, running a simulation in
Xyce, and finally plotting the results in gnuplot.

For reference, we reproduce the diode clipper image from the users guide below in Fig-
ure 2.1.

Figure 2.1. Diode Clipper circuit schematic from Xyce
Users’ Guide.

Overview

The remainder of this chapter is intended to be used as a step-by-step guide to creation
of a simple test circuit. You should have gschem installed on your system and be able to

13

follow along with the text. At the conclusion of the chapter, you will have created your first
schematic, generated a netlist from it, and simulated the circuit in Xyce.

In the following sections, we will construct a simple circuit and simulate it by taking the
following general steps:

� Place components and assign attributes to them. These attributes can be compo-
nent values or model names, and may also be “reference designators” (refdes) that
will be used by the netlister to name the component in the netlist.

� Connect components according to the circuit design.

� Add simulation directives such as analysis statements or output control.

� Generate a netlist using gnetlist.

� Simulate the circuit in Xyce.

� View the waveforms in a plotting program.

Drawing the circuit
We will start by launching gschem, which will open a window with a blank design and a
title block. The title block can be used to annotate your design, but for the time being we’ll
just ignore it and use it as a frame to enclose our circuit.

Adding voltage sources and editing attributes
Our first elements added to the design will be the various voltage sources that appear in
the diode clipper of Figure 2.1. To create these:

� Click the “Add” menu and the “Component” menu entry, or click the symbol of an
AND gate in the gschem tool bar. This will open a “Select Component...” dialog box
such as the one in Figure 2.2.

� Click the “Libraries” tab and scroll down to “SPICE simulation elements.”

� Select the “vdc-1.sym” symbol (DC voltage source), and add two instances of this
device side-by-side in the bottom left of the title block.

� Select the “vsin-1.sym” symbol in the “Select Component...” dialog, and insert one
instance of this symbol. In this case, we will place the “vsin” symbol directly below
the second DC voltage source, so that the positive terminal of the new “vsin” symbol
is connected to the negative terminal of the DC source above it.

14

Figure 2.2. Select Component... dialog box.

� Close the “Select Component...” dialog box.

When this is complete, gschem will have labeled our three new voltage sources V1, V2, and
V3, and your schematic will be arranged as in Figure 2.5. We will rename these to match
the names that appear in the netlist in the Users Guide. Rename V1 by double-clicking
the text “V1” in the schematic. A dialog box called “Single Attribute Editor” should appear
(Figure 2.3) with “refdes” in the “Name” box and “V1” in the “Value” box. Change V1 to
VCC, then click OK.

Figure 2.3. Single Attribute Editor dialog box.

15

Next, we will change the values of the VCC voltage source. Double-click the “DC 1V” near
the VCC source, and when the “Single Attribute Editor” appears, change “DC 1V” to “DC
5V”.

We will also change the name and DC value of source V2. But this time, just to explore
gschem’s capabilities, rather than double-clicking the “DC 1V” to open the Single Attribute
Editor, we’ll do it a different way.

Click the V2 voltage source symbol itself (it will change color) and then right-click to bring
up the context menu. In this menu, choose “Edit...”. This will bring up an “Edit Attributes”
dialog (Figure 2.4) that allows you to edit all of the device’s attributes at once. Next to
“refdes” you will see “V2”. Click this name and change it to “Vin”. Then, next to “value”
click the “DC 1V” and change it to “DC 0V”. Click the “Close” button to exit the attribute
editor.

Figure 2.4. Edit Attributes dialog box.

Finally, edit the “V3” sinusoidal voltage source and change “sin 0 1 1 meg” to “sin(0V 10V
1kHz)”. We’ll do this by double-clicking the V3 symbol, which also brings up the “Edit
Attributes” dialog. Change the value and close the editor.

Finally, add a connection to ground for the two voltage sources segments we’ve drawn
so far. To do this, click the “add component” button or menu entry, open the “Power rails”
library, and choose the “gnd-1.sym” symbol. Place an instance of this symbol at the neg-
ative terminal of both the VCC and V3 voltage sources. Close the “Select Component...”
dialog.

Note that if you have correctly connected devices, the red blocks at their terminals should
vanish. If you still see red blocks where devices should be connected, you have placed
the symbols improperly. Move the symbol by left-clicking it and moving it until the red
blocks of both devices coincide, release the mouse button, and the blocks should vanish.

16

When you’re done with these steps, your schematic will appear as in Figure 2.5.

Figure 2.5. Sources for the Diode Clipper circuit.

Adding devices
Adding the remaining devices to the circuit is an exercise in selecting and placing compo-
nents, rotating their symbols, and editing their attributes.

Rotating components can be done after placing them, or while placing them. To rotate a
symbol after it is placed, select the symbol with the left mouse button and type “er”. The
symbol will be rotated 90 degrees with each “er” command you give. Alternatively, you
can select the “Rotate 90 mode” from the “Edit” menu, and then click on a point around
which you want the symbol rotated. The symbol will be rotated 90 degrees around that
point with each mouse click.

To rotate a symbol before placing it, choose the symbol from the Select Components dia-
log and then type “er” before placing it. The symbol will be placed in its rotated orientation
when you click in the schematic window.

17

Continue creation of the Diode Clipper circuit by adding the 4 resistors that appear in
Figure 2.1. Use the “Basic Devices” library and symbol “resistor-1.sym”, rotating symbols
with “er” as required. Do the same for the capacitors (Basic Devices, capacitor-1.sym)
and diodes (Diodes (generic) library, diode-1.sym symbol). Place these devices in the
rough locations indicated in Figure 2.1, which will leave them all disconnected. The result
should appear as in Figure 2.6.

Figure 2.6. Placed components for Diode Clipper circuit.

Edit the attributes of all devices to give them the values shown in Figure 2.1. Note that all
of the devices you have just added have no “value” attribute yet, so you will have to add
one. Double-click each device in turn to bring up the Edit Attributes dialog. In the lower
part of the dialog is an “Add Attribute” pane. For the resistors and capacitors choose
“value” as the “Name” of the attribute to add, and the value of the component (e.g. “1K”
for resistor R1) in the Value of that attribute. Then change the visibility to “Show Value
Only” to keep the schematic legible, and click the “+Add” button.

Unfortunately, gschem has a tendency to put the text for the value in an ugly location,
so once you close the editor you may have to move these labels. Click the background
of your schematic (to deselect the component), then click the label you want to move
until only it is highlighted. Drag the component value to a place that looks good in your
schematic.

For the diodes, do not add “value” attributes. Diodes require a model name and an
associated model “card.” For these devices, add an attribute “model-name” with value
“D1N3940”

18

When this is complete, your schematic should look as it does in Figure 2.6.

Connecting the devices
Next, we will add “nets” to tie all the components together properly. To begin, select the
“nets” tool in the gschem toolbar (it is to the right of the component tool), or choose the
“Add” menu and the “Net” option.

Move your mouse to the lower terminal of resistor R2. When you are close, a small circle
will appear around the terminal indicating that your new net will be connected there. Click
your left mouse button, move to the upper terminal of resistor R3, then click the left mouse
button and hit your “Esc” key. R2 and R3 will now be connected.

Do the same thing to connect diodes D1 and D2. Remember to hit “Esc” after connecting
these two devices. Your partial schematic will appear as in Figure 2.7.

Figure 2.7. First two nets added to Diode Clipper circuit.

Our next net will connect the lower terminals of R3, D2 and R4 together. Using the net
tool, click the lower terminal of R3 and drag to the lower terminal of D2. Release the
mouse button at D2 but do NOT type “Esc.” Move your mouse to the lower terminal of R4,
and click again. The three devices will now be connected. Hit “Esc” to terminate creation
of this net.

Connecting R1 and C1 presents a new problem. R1 should be connected to R2, R3,
D1, D2 and C1. If you simply drag a net from R1 to C1 gschem will NOT automatically

19

connect this net to the nets it crosses. To assure correct interconnection, click the net
tool, click the right terminal of R1, then click the middle of the net between R2 and R3.
Note that gschem shows a white dot here, indicating that there is a connection, not just a
coincidental crossing of lines. Click again at the middle of the net between D1 and D2,
and then finally to the leftmost terminal of C1. Hit “Esc” to end the net. Now R1, R2, R3,
D1, D2 and C1 are properly connected.

Connect the remaining unconnected terminal of R2 to the unconnected terminal of D1.
Then connect the unconnected terminals of C1 and R4 together. Note that gschem auto-
matically draws a right angle in the net between these final two devices.

Finally, add a ground connection to the lower terminal of R4 (add component, “Power
rails” library, symbol “gnd-1.sym”).

Your circuit, which is still not complete, will look like Figure 2.8.

Figure 2.8. Remaining nets added to Diode Clipper circuit.

Completing the schematic
Our circuit is still not complete. The voltage sources are not yet connected to the main
circuit. We will do this by creating named “nets” that connect the sources in the bottom
corner to the circuit.

To begin, we’ll attach the VCC device to the upper terminal of D1. We could do this by
drawing a net attaching them, but instead we’ll define a VCC “power rail.” To do this, select

20

the “vcc-1.sym” symbol from the “Power rails” library, and connect one to the positive
terminal of the VCC voltage source, and another to the upper terminal of D1. This special
Vcc symbol tells the gnetlist program to connect any terminal to which it’s attached to a
common net named “vcc.”

We now want to connect the positive terminal of Vin to the remaining contact of R1. To
do this we’ll place two instances of the “Input/Output (generic)” “input-1.sym” near (but
not connected to) the Vin positive terminal and the R1 unconnected terminal. Use the
net tool to connect each of these symbols to the one contact it is near. Using the left
mouse button to select each of the two new nets, and the right mouse button to bring up
a context menu, use the “Edit...” menu entry and resulting “Edit Attributes” dialog to add
the “netname” attribute to the net, and set the value of that attribute to “IN”.

Finally, add an instance of the “ouput-1.sym” symbol from the “Input/Output(generic)” li-
brary and connect it to the net that connects C1 and R4. Using the Edit Attributes dialog,
add a “netname” of “OUT” to the net that connects C1 and R4.

Our schematic is now complete but for a diode model. It should appear as in Figure 2.9.

Figure 2.9. Complete Diode Clipper schematic.

21

Adding a Model Card
Our diode clipper circuit schematic is complete, but is still missing some information
needed to generate a simulation netlist. The two diodes reference an undefined model,
D1N3940. Without this model defined, Xyce will have no way to determine what parame-
ters to use in the diode devices. There are multiple methods to add this model data, and
we will use the one that creates the fewest unique lines of netlist code.

Select the “Add component” tool, and the “spice-model-1.sym” symbol from the “Spice
simulation elements” library. Place this component in the upper right corner of your
schematic, and double-click it to bring up the attribute editor. Make the following changes
to the attributes of this symbol:

� Delete the “file” attribute by right-clicking its name and choosing “delete.”

� Add a “model-name” attribute with value “D1N3940”

� Add a “type” attribute with value “D”. Make the type attribute invisible.

� Add a “model” attribute (also invisible) with the value

IS=4e-10 RS=.105 N=1.48 TT=8e-7 CJO=1.95E-11 VJ=.4 M=.38

EG=1.36 XTI=-8 KF=0 AF=1 FC=.9 BV=600 IBV=1e-4

You should enter all of these on a single line in the attribute editor, or gnetlist will
generate a netlist with syntax errors. It is possible to force gnetlist to generate
multiline model cards, but that will be left as an exercise for the reader.

Your attribute editor should appear as in Figure 2.10.

Figure 2.10. Model component attributes for diode clipper.

At this stage, your schematic contains all the elements necessary to generate a valid
simulation netlist except for an analysis type and output control. Save the schematic and
give it a name (such as DiodeClipper.sch).

22

Generating the netlist
We are now ready to create our first netlist with gEDA and friends. Using the Diode-
Clipper.sch schematic file you just created, run the gnetlist program with the following
command-line options:

gnetlist -o diodeclipper.cir -g spice-sdb DiodeClipper.sch

This command tells gnetlist to use its “spice-sdb” back-end to generate a SPICE netlist
called “diodeclipper.cir”. The “spice-sdb” back-end is the best one to use to generate
Xyce netlists, even though it is not an exact match. At this time, there is no Xyce-specific
gnetlist back-end.

The resulting netlist produced by gnetlist will look like this:

* gnetlist -o diodeclipper.cir -g spice-sdb DiodeClipper.sch

* Spice file generated by gnetlist *

* spice-sdb version 4.28.2007 by SDB -- *

* provides advanced spice netlisting capability. *

* Documentation at http://www.brorson.com/gEDA/SPICE/ *

*============== Begin SPICE netlist of main design ============

.MODEL D1N3940 D (IS=4e-10 RS=.105 N=1.48 TT=8e-7 CJO=1.95E-11 VJ=.4 M=.38 EG=1.36 XTI=-8 KF=0 AF=1 FC=.9 BV=600 IBV=1e-4)

D2 0 2 D1N3940

D1 2 Vcc D1N3940

C1 2 OUT 0.47u

R4 0 OUT 5.6K

R3 0 2 3.3K

R2 2 Vcc 3.3K

R1 IN 2 1K

V3 1 0 sin (0V 10V 1kHz)

Vin IN 1 DC 0V

VCC Vcc 0 DC 5V

.end

Here you can see how gnetlist has interpreted our schematic elements and named
circuit nodes. If your generated netlist does not look like this one, or if it contains any
“unconnected” nodes, re-check your schematic.

We are still not ready to run this circuit, because it is lacking analysis and output control
statements.

23

Adding analysis and output statements
The hard work of creating a netlist from a schematic has been done. We could use the
netlist produced above merely by editing it in a standard text editor (e.g. vi or emacs) to
add analysis and output statements, but we can also do it within gschem.

To add an output statement to the schematic, re-open it in gschem and add two instances
of the “spice-directive-1.sym” symbols from the “SPICE simulation elements” library. From
each, delete the “file” attribute. In one, change the “value” attribute to be “.DC VIN -10 15
1” and in the other “.PRINT DC V(IN) V(2) V(OUT)”. This corresponds to the DC sweep
example in the Xyce Users Guide. Save your schematic, and regenerate the netlist. The
result should be as below:

* gnetlist -o diodeclipper.cir -g spice-sdb DiodeClipper.sch

* Spice file generated by gnetlist *

* spice-sdb version 4.28.2007 by SDB -- *

* provides advanced spice netlisting capability. *

* Documentation at http://www.brorson.com/gEDA/SPICE/ *

*============== Begin SPICE netlist of main design ============

.PRINT DC V(IN) V(2) V(OUT)

.DC VIN -10 15 1

.MODEL D1N3940 D (IS=4e-10 RS=.105 N=1.48 TT=8e-7 CJO=1.95E-11 VJ=.4 M=.38 EG=1.36 XTI=-8 KF=0 AF=1 FC=.9 BV=600 IBV=1e-4)

D2 0 2 D1N3940

D1 2 Vcc D1N3940

C1 2 OUT 0.47u

R4 0 OUT 5.6K

R3 0 2 3.3K

R2 2 Vcc 3.3K

R1 IN 2 1K

V3 1 0 sin (0V 10V 1kHz)

Vin IN 1 DC 0V

VCC Vcc 0 DC 5V

.end

In this particular instance we have taken advantage of knowing how gnetlist has num-
bered the net on the anode of the diode (in this case, it is node 2), which we only knew
because we had previously generated the netlist. In general this is not safe, as later devel-
opment of the circuit could change the assignment of node numbers. It is generally safer
to give nets that you want to print non-numeric netnames. Giving nets numeric netnames
is dangerous, as gnetlist might assign some other unnamed net that number (a known
issue in gnetlist/spice-sdb). We have done just that for IN and OUT.

24

Note also that our “spice directive” components have been written to the netlist verbatim.
This component can be used to force any particular text into the netlist generated by
gnetlist with spice-sdb, and can be a powerful tool for coping with oddities of Xyce that
aren’t dealt with directly by the spice-sdb back-end.

Simulation with Xyce
Once we have a suitable netlist generated, complete with analysis and print statements,
we can run Xyce over it to produce simulation results.1

Xyce diodeclipper.cir

Xyce will complete quickly and produce a file called “diodeclipper.cir.prn” with the simula-
tion results in it. Some representative lines of this output are shown below.

Index V(IN) V(2) V(OUT)

0 -1.00000000e+01 -6.41596339e-01 9.72092671e-28

1 -9.00000000e+00 -6.36033187e-01 9.65377367e-27

2 -8.00000000e+00 -6.29569220e-01 1.29703606e-26

3 -7.00000000e+00 -6.21845977e-01 1.66372880e-28

4 -6.00000000e+00 -6.12257417e-01 3.82700013e-28

[...]

25 1.50000000e+01 5.64159843e+00 -1.05830968e-26

End of Xyce(TM) Simulation

This is Xyce’s standard columnar output. Other output formats are supported, but this will
suffice for the purposes of this application note.

Plotting the results
Just as Xyce does not provide schematic capture capability, neither does it provide ca-
pability for graphical display of data. These capabilities require use of some other plot-
ting software. Choices for this plotting software include the open-source tool gnuplot
(http://www.gnuplot.info/), spreadsheet programs such as openoffice-scalc (http://
www.openoffice.org/) or Microsoft Excel, or any other tool of your choice. Alternate Xyce
output formats are available for use in existing open-source SPICE data viewers such as
gwave (http://gwave.sourceforge.net/, gaw (http://www.rvq.fr/linux/gaw.php), or
nutmeg, and commercial products such as Cadence PSpice AD 2 or Tecplot.

1Again, Sandia users running a precompiled binary would use the runxyce wrapper script instead.
2Of course, PSpice AD has its own schematic capture tool and simulation engine, and if you had it you

probably wouldn’t need this application note!

25

http://www.gnuplot.info/
http://www.openoffice.org/
http://www.openoffice.org/
http://gwave.sourceforge.net/
http://www.rvq.fr/linux/gaw.php

In this section, we will use gnuplot to display the DC swept diode clipper to produce a
graph similar to the one that appears in the Xyce Users Guide.

By following the steps in the previous section, you have produced a file diodeclipper.cir.prn

containing the simulation results for the DC sweep of the diode clipper circuit. The first
column of the data is an index of the result and can be ignored. The second column is
V(IN), and we will use it as the independent variable for plotting.

Open gnuplot and issue the following commands:

plot ’diodeclipper.cir.prn’ using 2:2 with lines title "V(IN)"

replot ’diodeclipper.cir.prn’ using 2:3 with lines title "V(2)"

replot ’diodeclipper.cir.prn’ using 2:4 with lines title "V(OUT)"

The first of these commands reads the output file and plots the the second column against
itself (plotting V(IN) against V(IN)). The next line plots the third column against the sec-
ond, and the next plots the fourth column against the second, overlaying them on the first
curve instead of replacing the first curve (“replot” instead of “plot”). Each command spec-
ifies “with lines” to override gnuplot’s default behavior of plotting points instead of curves.
Each command also specifies a label for the line that will appear in the legend. This will
reproduce the curves in the DC sweep graph that appears in the Xyce Users’ Guide. It
should appear as in Figure 2.11.

Figure 2.11. DC Sweep plot for diode clipper circuit.

Changing the analysis
In the earlier sections, we set up our diode clipper schematic to contain two “spice-
directive” symbols so that the resulting netlist would run in Xyce with no further editing.

26

To change the diode clipper netlist to run a transient rather than a DC simulation, one
need only modify the netlist to replace the “.DC” line with a “.tran” line, and to change the
print line from “.print DC” to “.print tran”.

Though this operation could be performed by opening gschem and changing the “spice-
directive” elements, once a netlist has been generated by gnetlist it is a simple text file
that can be edited in any plain-text editor. If you need to run the same circuit through
multiple analyses, it may be easier to copy the netlist and edit it directly than to go back,
re-edit the schematic, and re-generate the netlist.

Either way, you should now be able to modify your diode clipper netlist to perform the
transient calculation in the Xyce Users’ Guide, chapter 3, section 3 (“Transient Analysis”).

Summary
In this chapter we’ve laid out the basic steps for using gEDA to create a simulation input
for Xyce. These steps are:

� Lay out the components and connect them with nets

� Modify the “value” attribute of simple components (resistors, capacitors, sources,
etc.)

� Add “model-name” attributes for components that require models (diodes, transis-
tors, etc.)

� Add “spice-model” symbols with appropriate attributes to define the models needed

� Add “spice-directive” symbols to emit appropriate simulator control statements

� Give any nets that you want to print non-numeric “netname” attributes rather than
letting gnetlist assign them numeric names itself.

� Generate a netlist from the schematic using gnetlist and the “spice-sdb” back-end.

27

3. Creating hierarchical
designs

While the steps of the previous chapter will provide all the tools you will need for creating
single schematics for simple designs, it is sometimes necessary to create a hierarchical
design, in which sub-circuits are created in separate schematics, and the sub-circuits
combined in a higher-level design. Both gEDA and Xyce provide tools for making such
designs.

gschem supports a notion of hierarchical schematics and has simple menu items for mov-
ing up and down a hierarchy, but as of this writing it is difficult to use this feature along
with the “spice-sdb” netlist generation back-end.

Since the hierarchical schematic tools of gschem are difficult to use with the netlister,
we will focus instead on spice-sdb’s capability for generating hierarchical netlists from
separate schematics.

As a starting point for our discussion of hierarchical design, we’ll produce a simple com-
mon emitter amplifier circuit in a flattened design, and then break it into a two-level design
with the amplifier itself in a separate subcircuit that can be used at a higher level.

The common emitter exercise in this chapter is patterned on a similar exercise based
on the commercial product “LT Spice” in the “Hands-On Radio” column by Ward Silver.
This column is published in the magazine QST, the monthly magazine of the American
Radio Relay League. The exercise is described in Experiments #83 through #85[2, 3, 4],
which are available to members of that organization at their web site http://www.arrl.

org/Hands-On-Radio or in book form from the ARRL store http://www.arrl.org/shop/

ARRL-s-Hands-On-Radio-Experiments-Volume-2[5].

This section is only a basic introduction to using the hierarchical netlisting capabilities
of spice-sdb. For much more detail, there is no substitute for the documentation written
by Stuart Brorson, the author of the spice-sdb gnetlist back-end. This documentation
is available on the web at http://www.brorson.com/gEDA/SPICE/intro.html and is also
distributed along with gEDA. Specific information about hierarchical design is in section
4.12 of that documentation.

28

http://www.arrl.org/Hands-On-Radio
http://www.arrl.org/Hands-On-Radio
http://www.arrl.org/shop/ARRL-s-Hands-On-Radio-Experiments-Volume-2
http://www.arrl.org/shop/ARRL-s-Hands-On-Radio-Experiments-Volume-2
http://www.brorson.com/gEDA/SPICE/intro.html

The Common Emitter Amplifier — flat
design
Figure 3.1 shows the schematic for a simple common emitter amplifier, driving circuitry,
and load.

Figure 3.1. Schematic for flattened common emitter ampli-
fier circuit

There is nothing particularly complicated about this schematic, and the basic steps of
the last chapter are sufficient to create it. We will not give step-by-step instructions for
creating it. There are, however, points worth noting.

Remember to add “value” attributes to all the resistors and capacitors. Set the values of
these “value” attributes to the resistances and capacitances in the figure.

Use the “npn-1.sym” symbol in the “basic devices” library for Q1. Add a “model-name”
attribute to Q1, and make it visible as “value only”. For this circuit, since we have only
one 2N2222 transistor, we’ll add the model directly to the symbol rather than adding a
separate “spice-model” symbol. To do this, add a “model” attribute to the Q1 transistor
and give it the value:

Is=14.34f Xti=3 Eg=1.11 Vaf=74.03 Bf=255.9 Ne=1.307 Ise=14.34f

Ikf=.2847 Xtb=1.5 Br=6.092 Nc=2 Isc=0 Ikr=0 Rc=1 Cjc=7.306p

Mjc=.3416 Vjc=.75 Fc=.5 Cje=22.01p Mje=.377 Vje=.75 Tr=46.91n

29

Tf=411.1p Itf=.6 Vtf=1.7 Xtf=3 Rb=10

Again, enter all of this text on a single line in the attribute editor, to assure proper netlist
generation. These parameters give Xyce all of the information it needs to simulate Q1
with the performance of a 2N2222 transistor.

In addition to the “model-name” and “model” attributes, you also need to add a “type”
attribute with value “NPN” to device Q1. This will be used by spice-sdb to produce a
correctly formatted “.MODEL” line appropriate to an NPN transistor.1

Add “netname” parameters to the three nets connected to the Q1 transistor so we can
print them more easily. Use “Vc” for the net connected to the collector, “Ve” for the net
connected to the emitter, and “Vb” for the net connected to the base, as shown in fig-
ure 3.1. Remember that to add a netname to a net, you must highlight the net, right-click
to bring up the context menu, and “Edit...” to bring up the Edit Attributes dialog.

Finally, add three “spice-directive” symbols, removing the “file” attribute of each one. To
each of these directive symbols, add one of the following lines.

.op

.ac oct 10 .01 1e5

.print AC Vdb(Ve) Vp(Ve) Vdb(out) Vp(out)

Once all the components are placed and given values, and the SPICE directives added,
your schematic should look like Figure 3.2. Save the schematic with the file name “Com-
monEmitterI.sch”.

The netlist is generated as before:

gnetlist -o common emitterI.cir -g spice-sdb CommonEmitterI.sch

which will produce a netlist:

* gnetlist -o common emitterI.cir -g spice-sdb CommonEmitterI.sch

* Spice file generated by gnetlist *

* spice-sdb version 4.28.2007 by SDB -- *

* provides advanced spice netlisting capability. *

* Documentation at http://www.brorson.com/gEDA/SPICE/ *

1This need for a “type” attribute is peculiar to these generic transistor symbols in the “Basic Devices”
library. There are other options, and we’ll see some of those options later in this tutorial.

30

Figure 3.2. Complete schematic for flattened common
emitter amplifier circuit

*============== Begin SPICE netlist of main design ============

.print AC Vdb(Ve) Vp(Ve) Vdb(out) Vp(out)

.ac oct 10 .01 1e5

.op

R5 0 OUT 1MEG

V1 1 0 sin 0 1 1meg AC 1

V2 Vcc 0 12

C2 Vc OUT 10u

R4 0 Ve 270

R3 Vc Vcc 1.5k

Q1 Vc Vb Ve 2N2222

.MODEL 2N2222 NPN (Is=14.34f Xti=3 Eg=1.11 Vaf=74.03 Bf=255.9 Ne=1.307 Ise=14.34f Ikf=.2847 Xtb=1.5 Br=6.092 Nc=2 Isc=0 Ikr=0 Rc=1 Cjc=7.306p Mjc=.3416 Vjc=.75 Fc=.5 Cje=22.01p Mje=.377 Vje=.75 Tr=46.91n Tf=411.1p Itf=.6 Vtf=1.7 Xtf=3 Rb=10)

R2 0 Vb 6.8k

R1 Vb Vcc 39k

C1 1 Vb 10u

.end

31

Again, if your netlist does not look like this one, check your schematic against Figure 3.2.

Run the simulation in Xyce, and it will produce tabular output in the file “common emitterI.cir.FD.prn”
that contains the response of the circuit (in dB and phase) for a range of input frequencies
between .01 and 1e5Hz.

Common Emitter Amplifier — hierarchical
netlist version
As noted before, gschem does provide a capability to create hierarchical schematics, and
there is a menu called “Hierarchy” that has commands to move up and down the hierarchy.
This feature is quite powerful and does make moving between levels of a hierarchical
schematic convenient. Unfortunately, this feature is somewhat newer than the spice-sdb
netlister back-end, and it does not play very well with spice-sdb as there are a number of
issues in spice-sdb that interfere with its use. Further, when this feature is used, gnetlist
builds a flattened netlist with all the hierarchy somewhat obscured.

spice-sdb does, however, have its own capability for dealing with hierarchical designs, and
it can produce netlists that use the subcircuiting capability of SPICE (and by extension,
Xyce). This method preserves the hierarchical structure of the schematic in the netlist
format. In this section we will demonstrate how to use this version of hierarchical design.

Overview
The creation of a hierarchical netlist proceeds according to the following general scheme.

� Schematics for low-level components are created using input and output symbols to
mark where they will be connected to the upper levels.

� A special “subcircuit” symbol is added to the schematic to instruct the netlister that
it should generate SPICE/Xyce subcircuit syntax.

� The low-level schematics are netlisted with gnetlist.

� A symbol is created to represent the subcircuit at higher levels. Pins on the symbol
are associated with the input and output symbols in the subcircuit’s schematic.

� Higher level schematics are drawn using the symbol for the subcircuit to represent
the lower-level circuit. These symbols are marked with attributes to direct the netlis-
ter to the appropriate netlist file for the subcircuit.

� The high-level circuit is netlisted with gnetlist. It will incorporate the netlist files of
the lower level, and reference them through subcircuit instantiation lines.

32

The Common Emitter Amplifier subcircuit
To begin our hierarchical design, we start at the lower level, the amplifier itself. We’ll
remove the input source, the Vcc power supply, and the output load components of our
original amplifier circuit and replace them with symbols that gnetlist spice-sdb will use
to tie the lower level of the schematic in to the higher level.

The complete schematic for the common emitter amplifier subcircuit appears in Figure 3.3.
There are several points to note about this schematic.

Figure 3.3. Schematic for the common emitter amplifier
subcircuit

� The V1 and V2 voltage sources and the R5 resistor have been removed and re-
placed with “spice-subcircuit-IO-1.sym” symbols from the “SPICE Simulation Ele-
ments” library, as have been the “Vcc” voltage rail symbol and the ground connec-
tions.

� V1 has been replaced by a spice-subcircuit-IO symbol named “P1” (that is, its

33

“refdes” attribute is P1). It has also been given a “name” attribute “IN” that is used
solely for display purposes in the schematic.

� The R5 resistor is replaced by a spice-subcircuit-IO symbol with refdes “P2” and
name “Out”.

� The Vcc connection is now a pin labeled “P3” with name “V+”

� Both terminals that had previously been attached directly (and separately) to ground
are now tied together and connected to a fourth spice-subcircuit-IO symbol with
refdes “P4” and name “V-”.

� A single instance of the “SPICE .SUBCKT” symbol (A1, symbol “spice-subcircuit-
LL-1.sym”) has been added to the schematic. This is the symbol gnetlist will use
to create a valid SPICE (or Xyce) “.subckt” line to define the subcircuit.

� In this version of the circuit we’ve used a slightly different symbol for the bipolar
transistor Q1. This time, we’ve used the symbol “spice-npn-1.sym” in the “SPICE
Simulation Elements” library rather than the “npn-1.sym” symbol in the “Basic De-
vices” library. spice-sdb recognizes this symbol as an NPN transistor without our
needing to add a “type” attribute as we did in the previous section.

Q1 has the following attributes:

� refdes = Q1 (this will be created by gschem automatically)

� model-name=Q2N2222A

� model=Is=14.34f Xti=3 Eg=1.11 Vaf=74.03 Bf=255.9 Ne=1.307

+ Ise=14.34f Ikf=.2847 Xtb=1.5 Br=6.092 Nc=2 Isc=0 Ikr=0 Rc=1

+ Cjc=7.306p Mjc=.3416 Vjc=.75 Fc=.5 Cje=22.01p Mje=.377 Vje=.75

+ Tr=46.91n Tf=411.1p Itf=.6 Vtf=1.7 Xtf=3 Rb=10

Note that we have broken the very long model specification into multiple lines this
time, and to make this work correctly we need to add “+” continuation characters as
the first character of each line after the first. This text will be written out to the netlist
verbatim, and by having the “+” signs first on the lines Xyce will recognize these
extra lines as being continuations of the previous line. Leaving these out will create
a syntax error in the resulting netlist.

The “SPICE .SUBCKT” symbol (spice-subcircuit-LL-1.sym) has a “model-name” attribute
of “Amp 1”. This is the name by which the subcircuit will be identified to higher level
schematics.

Create this schematic in gschem and save it as Amp1.sch. Then generate its netlist using:

34

gnetlist -o Amp1.cir -g spice-sdb Amp1.sch

The result will be the following netlist:

* Begin .SUBCKT model *

* spice-sdb ver 4.28.2007 *

.SUBCKT Amp 1 1 2 3 4

*============== Begin SPICE netlist of main design ============

Q1 Vc Vb Ve Q2N2222A

.MODEL Q2N2222A NPN (Is=14.34f Xti=3 Eg=1.11 Vaf=74.03 Bf=255.9 Ne=1.307

+ Ise=14.34f Ikf=.2847 Xtb=1.5 Br=6.092 Nc=2 Isc=0 Ikr=0 Rc=1

+ Cjc=7.306p Mjc=.3416 Vjc=.75 Fc=.5 Cje=22.01p Mje=.377 Vje=.75

+ Tr=46.91n Tf=411.1p Itf=.6 Vtf=1.7 Xtf=3 Rb=10)

R4 4 Ve 270

R3 Vc 3 1.5K

R2 4 Vb 6.8K

R1 Vb 3 39K

C2 Vc 2 10u

C1 1 Vb 10u

.ends Amp 1

There are several important things to note:

� The subcircuit has four input nodes on the .SUBCKT line. These correspond exactly
to the “spice-subcircuit-IO” symbols in order of refdes number.

� The .model card for the Q1 transistor is inside the subcircuit.

� The name of the subcircuit on the .SUBCKT line is the model-name of the A1 “spice-
subcircuit-LL-1.sym” symbol.

� The multiline “model” attribute of the Q1 transistor has properly been output as a
multiline .MODEL card acceptable to Xyce and any version of SPICE.

We have now constructed the lower level subcircuit schematic and its associated netlist.
It is now time to turn our attention to the higher level circuit.

Creating a symbol for the subcircuit
We are now in a position to create a single symbol that will represent our common emit-
ter amplifier subcircuit. Note that in this section we are providing only a brief tutorial

35

on how to create this symbol, and that for more detail on symbol creation in gschem

you should consult the documentation at http://wiki.geda-project.org/geda:gschem
symbol creation.

Since we are creating a symbol and not a schematic, we don’t want our window to contain
the default title block. Open gschem and drag your mouse so that it selects the entire title
block and turns it orange. Then type “d” to delete it. Your gschem window will now be
empty except for a faint grid.

When you open gschem you will be zoomed out much too far for good symbol creation.
Zoom in several times using the “z” key. We’re going to create a symbol that is 10 boxes
wide and six boxes high, so zoom in until that number of boxes is a significant fraction of
the window.

Check that snap-to-grid is on, and that text “Grid(100,100)” appears in the bottom infor-
mation line of the gschem window. If it does not, type “os” (or choose “Options → Toggle
Snap On/Off”) until it does.

Make sure that grid snap size is set to 100 (this is the default).

In the Add menu, chose “box”. Click on one of the grid intersections, move your mouse
so that a box 6 squares high and 10 squares wide appears, and click again to create it.
This is the outline of the symbol we will use to represent our common emitter amplifier
subcircuit.

Now it’s time to add pins and labels to the symbol. Select “pin” from the “Add” menu.
Move your mouse one grid square left of the left side of the green box, three grid squares
from the top. Click the mouse, then mode to the edge of the box and click again. Your
symbol should appear as in Figure 3.4.

We will now change the attributes of this pin so it will be useful. We must set the “pintype”,
“pinlabel”, “pinnumber” and “pinseq” attributes, all of which already exist, but have useless
values. Exit “pin mode” by hitting “Esc”, and double click on the white bar of the pin. An
attribute editor will appear. Use it to set the attributes:

� pintype in (uncheck the “Vis?” box)

� pinlabel In

� pinnumber 1 (uncheck the “Vis?” box)

� pinseq 1 (uncheck the “Vis?” box)

This will give your pin the name “In” and it will be recognized as an input. The pinnumber
and pinseq attributes will be used by the netlister to connect this pin to appropriate nodes
of the subcircuit.

36

http://wiki.geda-project.org/geda:gschem_symbol_creation
http://wiki.geda-project.org/geda:gschem_symbol_creation

Figure 3.4. First pin added to symbol

Return to your symbol drawing by adding pins for Out, “V+”, and “V-”.

“Out” should have

� pintype out (uncheck the “Vis?” box)

� pinlabel Out

� pinnumber 2 (uncheck the “Vis?” box)

� pinseq 2 (uncheck the “Vis?” box)

V+ should have

� pintype pwr (uncheck the “Vis?” box)

� pinlabel V+

37

� pinnumber 3 (uncheck the “Vis?” box)

� pinseq 3 (uncheck the “Vis?” box)

V- should have

� pintype pwr (uncheck the “Vis?” box)

� pinlabel V-

� pinnumber 4 (uncheck the “Vis?” box)

� pinseq 4 (uncheck the “Vis?” box)

We now need to add a “refdes” and “device” attribute to the entire symbol (not to any
particular element of the symbol). To do this, exit “pin mode” by hitting “Esc”, and then
right click on the black background of the window. Choose “Add Attribute”, and create
an attribute with name “refdes” and value “X?”. Move this text to the upper right of the
symbol. Then create another attribute with name “device” and value “CEAmplifier”. Move
this to the bottom right of the symbol.

Finally, rotate the V+ and V- labels so they are horizontal. To do so, click on the text and
type “er” to rotate them, then drag them into a place that looks good. The result should
appear as in Figure 3.5.

The last step is easily overlooked but is essential to making the symbol work correctly. In
the “Edit” menu choose “Symbol Translate...”, enter “0” into the dialog box and click “OK”.
This translates the symbol to the origin, so when it is read into a schematic later it will be
able to be placed properly.

Now, create a subdirectory named “symbols” under the directory where your design is
being created. Save your symbol in this directory with the name “CEAmp.sym”. Our
symbol is now ready to use.

Drawing the higher level schematic

The first step in creating our higher level schematic is to let gschem know where to find
our new symbol. In the directory where you will do your schematic editing (and in which
you have just created a “symbols” directory and saved your symbol), create a file called
“gafrc” and, using a plain-text editor, add the following line to it:

(component-library "./symbols")

38

Figure 3.5. Complete Amplifier symbol

Now, when you open gschem your new symbol will be available as a “symbols” library in
the Select Component dialog.

Open gschem on a new schematic. Add your new symbol to this schematic by choosing
“Add Component” and selecting your symbol from the “symbols” library that now appears
at the top of the Libraries tab. Place it in the center of the schematic, and add the other
components that appear in figure 3.6.

Note that the input, Vcc, and output load resistor are all the same as they were in our
original flat circuit of Figure 3.2, but the basic amplifier has been replaced with a single
symbol.

Note also that we have added SPICE directive symbols with the “.ac” and “.print” lines we
need to control the simulation and get output. We will only print the output signal this time.

Before we can netlist this circuit, we have to tie the X1 symbol to the subcircuit we created
before. To do this, simply add a “model-name” attribute with value “Amp 1” (the model-
name we gave our subcircuit earlier) and a “file” attribute with value “Amp1.cir” (the file

39

Figure 3.6. Common Emitter Amplifier driver and load

name we generated from the subcircuit schematic) to the X1 symbol.

Save the schematic as “CE Amplifier top.sch”.

Now we can netlist with gnetlist -o CE_Amplifier_top.cir -g spice-sdb CE_Amplifier_top.sch’,
which will produce the following netlist:

* gnetlist -o CE Amplifier top.cir -g spice-sdb CE Amplifier top.sch

* Spice file generated by gnetlist *

* spice-sdb version 4.28.2007 by SDB -- *

* provides advanced spice netlisting capability. *

* Documentation at http://www.brorson.com/gEDA/SPICE/ *

*vvvvvvvv Included SPICE model from Amp1.cir vvvvvvvv

* Begin .SUBCKT model *

40

* spice-sdb ver 4.28.2007 *

.SUBCKT Amp 1 1 2 3 4

*============== Begin SPICE netlist of main design ============

Q1 Vc Vb Ve Q2N2222A

.MODEL Q2N2222A NPN (Is=14.34f Xti=3 Eg=1.11 Vaf=74.03 Bf=255.9 Ne=1.307

+ Ise=14.34f Ikf=.2847 Xtb=1.5 Br=6.092 Nc=2 Isc=0 Ikr=0 Rc=1

+ Cjc=7.306p Mjc=.3416 Vjc=.75 Fc=.5 Cje=22.01p Mje=.377 Vje=.75

+ Tr=46.91n Tf=411.1p Itf=.6 Vtf=1.7 Xtf=3 Rb=10)

R4 4 Ve 270

R3 Vc 3 1.5K

R2 4 Vb 6.8K

R1 Vb 3 39K

C2 Vc 2 10u

C1 1 Vb 10u

.ends Amp 1

*^^^^^^^^ End of included SPICE model from Amp1.cir ^^^^^^^^

*

*============== Begin SPICE netlist of main design ============

.print AC v(out)

.ac oct 10 .1 1e5

R1 OUT 0 1MEG

V2 1 0 sin 0 1 1meg AC 1

V1 2 0 DC 12V

X1 1 OUT 2 0 Amp 1

.end

Note that the entire contents of the Amp1.cir subcircuit have been reproduced in the top-
level circuit, and that the top-level nets have been correctly attached to the input nodes of
the X1 subcircuit of model Amp 1.

Summary

To summarize this process, we performed the following steps:

� Created a subcircuit schematic, with connections to the upper level defined by
“spice-subcircuit-IO-1.sym” symbols and a subcircuit declaration using the “spice-
subcircuit-LL-1.sym” symbol to define the name of the model.

� Netlisted the subcircuit schematic

41

� Created a symbol to represent the subcircuit, with a pins “spice-subcircuit-IO-1.sym”
symbol in the subcircuit. Pin sequence numbers (“pinseq” attributes) were assigned
to pins to match the ordering of the subcircuit IO symbols.

� Created a “gafrc” file to tell gschem where to find our new symbol

� Created a higher-level schematic that used the symbol, attaching attributes to match
the model name and file name of the subcircuit.

� Netlisted the upper level schematic

42

4. Accessing Xyce-specific
Netlist Features

So far, everything we have done with gschem and gnetlist has used generic SPICE
features, and the netlists we have produced will work in any flavor of SPICE. But Xyce
does have numerous netlist language extensions that are not specifically accounted for by
the spice-sdb gnetlist backend. Some of these can be used anyway, and others require
minor patches to the spice-sdb backend.

Fortunately, most of the features that require changes to spice-sdb can also be worked
around in a slightly different manner and used with an unmodified version of spice-sdb as
shipped with gEDA.

We will begin in the next sections by working through an example of a parameterized
subcircuit with advanced analog behavioral modeling using an unmodified gEDA install.
The first section shows the netlist we wish to create (an example from the Xyce Test
Suite), and in the next section we work through a schematic that can produce a netlist
that is functionally equivalent. In the following section we will show how a small patch to
spice-sdb (available in the gEDA bug tracker) can simplify the process further, producing
exactly the desired netlist.

The Nonlinear Resistor Netlist
The netlist below is one of the test cases from the Xyce test suite, and was designed
to demonstrate Xyce’s subcircuit parameter extension and “B” source expression exten-
sions. This netlist contains the following Xyce extensions:

� Time integrator parameter specification using the .options timeint directive.

� Parameter definition using the .param statement.

� User-defined functions using the .func statement.

� Subcircuit definition (.subckt line) with parameter specification and default values
(PARAMS:).

� Subcircuit instantiation (X device) using parameter specification (PARAMS:).

43

Nonlinear Resistor Circuit for Test Suite

.tran 10us 10ms

.options timeint reltol=1.0e-6 maxord=2

.print tran v(1) v(2) v(3)

C1 1 0 400uF IC=400V

L1 1 2 15mH IC=0A

vmon 2 2a 0

R1 2a 3 4

Xnlr1 3 0 nlr PS 04 PARAMS: R0=0.15 E1=4 R1=6

.Subckt nlr PS 04 1 2

+ Params: R0=0.15 E1=4 R1=6

.PARAM E2 = {2*E1}

.PARAM delr = {R1-R0}

.PARAM k1 = {1/E1**2}

.PARAM r2 = {R0+sqrt(2)*delr}
Vmon 1 4 0

BGabs 0 101 I = {IF(TIME < .1p, 0, 100*abs(I(Vmon)))}
Cabs 101 0 1

Rabs 101 0 1E12

.Func Rreg1(a,b,c,d) {a +(b-a)*c/d}

.Func Rreg2(a,b,c,d,f) {a+sqrt(2-b*(2*c-d)**2)*f}
BEnlr 4 2 V = {I(Vmon) * IF(

+ V(101) < E1, Rreg1(R0,R1,V(101),E1),

+ IF(

+ V(101) < E2, Rreg2(R0,k1,E1,V(101),delr), R2

+)

+)}
.ends

.END

Figure 4.1. Nonlinear Resistor Netlist

44

� B source expressions using conditionals, time-dependent expressions, and user-
defined functions.

Most of these features are easily accessible from gEDA schematics, with the exception
of the “PARAMS:” extension of the subcircuit definition. There is no way in the current
version of spice-sdb to get additional text onto the end of a subcircuit definition.

Xyce does, however, support a syntax for passing parameters into subcircuits even if
the subcircuit definition does not include a PARAMS: block with parameter defaults. This
allows us to work around this deficiency in spice-sdb without modifying that back-end. We
will do just that in the following section.

The nonlinear resistor schematic —
workaround version
Figure 4.2 shows a top-level schematic for the nonlinear resistor circuit.

Creation of this schematic is straightforward. Note the following:

� The capacitor and inductor initial conditions (IC=) are simply tacked on to the com-
ponent value. That is, when setting the “value” attribute, the capacitor value gets
“400uF IC=400V”.

� The “Xnlr1” component uses the “resistor-2.sym” symbol from the “Basic Devices”
library rather than some custom symbol. This symbol is so generic in appearance
that it should be suitable for any two-terminal custom device. But we had to make a
number of changes to its attributes:

– Change its “refdes” attribute from “R2” to “Xnlr1”. The X at the beginning of the
refdes is critical, as it tells the spice-sdb backend to generate a subcircuit call
rather than a resistor instance.

– Change its “device” attribute from “resistor” to “behavioral-model” (a device at-
tribute unrecognized—and therefore ignored—by spice-sdb)

– Add a “file” attribute with value “nlr PS 04.cir”. We will shortly create a schematic
for this subcircuit with that name.

– Add a “model-name” attribute with value “nlr PS 04 R0=0.15 E1=4 R1=6”. Note
that this model name not only contains the name of the subcircuit, but also the
parameters we are trying to pass to that subcircuit.

– Make all attributes other than refdes and model-name invisible in the attribute
editor.

45

Figure 4.2. Nonlinear Resistor Top Level Schematic

46

� Add spice-directive symbols for the .tran, .print, and .options timeint lines.

� We have given all nets in this schematic “netname” attributes. Since we have named
them all, it is OK for us to give some of them numeric names, as gnetlist will not
be naming any nets automatically.

� We are saving this top-level schematic with the name “nlrcs10.sch”.

This top level schematic references a netlist of a subcircuit we haven’t created yet. That
is our next task.

Figure 4.3 is the subcircuit schematic for the nonlinear resistance itself.

Figure 4.3. Nonlinear Resistor Subcircuit Schematic

The important things to note here:

� The BGabs and BEnlr symbols are just instances of the DC voltage source symbol
vdc-1.sym, with the first letter of their “refdes” attribute changed from V to B. Any of

47

the voltage source symbols would have been suitable in this regard, we just picked
one. A custom symbol could also have been created. The important thing is that
the refdes have “B” as its first letter, so that spice-sdb will create a correct line in the
netlist.

� BGabs has its POSITIVE terminal connected to ground (it is difficult to see that in
the figure). This is important for getting the sign of the current right. Positive current
always flows from the positive to negative terminals of voltage sources (including B
sources).

� The net attached to the negative terminal of BGabs has been given a netname of
“101” so we can use it in expressions of the BEnlr source.

� There is a spice-subcircuit-LL.sym symbol with model-name “nlr PS 04”.

� All of the .func and .param statements that were given in Figure 4.1 are inserted
into the schematic using spice-directive symbols. Ordering is significant — Xyce
requires that expressions in all .param statements depend only on parameters pre-
viously defined. Make sure your directive symbols have sequential refdes values as
in the figure.

� The value of the BEnlr source is not shown in the schematic, because it is too long
and would clutter the schematic. The “value” attribute has been set to invisible. That
value is:

V={I(Vmon)*IF(
+ V(101)<E1, Rreg1(R0,R1,V(101),E1),

+ IF(

+ V(101)<E2, Rreg2(R0,k1,E1,V(101),delr),R2

+)

+)}

Here again we have explicitly added continuation characters to the lengthy value so
that it will be netlisted correctly. One could also have written the value as a single
line.

Once the subcircuit schematic is created, it is saved as “nlr PS 04.sch” and netlisted as
usual. When netlisted, the result is saved in “nlr PS 04.cir”:

* Begin .SUBCKT model *

* spice-sdb ver 4.28.2007 *

.SUBCKT nlr PS 04 1 3

*============== Begin SPICE netlist of main design ============

48

.PARAM E2 = {2*E1}

.PARAM delr = {R1-R0}

.PARAM k1 = {1/E1**2}

.PARAM r2 = {R0+sqrt(2)*delr}

.func Rreg1(a,b,c,d) {a +(b-a)*c/d}

.Func Rreg2(a,b,c,d,f) {a+sqrt(2-b*(2*c-d)**2)*f}

BEnlr 2 3 V = {I(Vmon) * IF(

+ V(101) < E1, Rreg1(R0,R1,V(101),E1),

+ IF(

+ V(101) < E2, Rreg2(R0,k1,E1,V(101),delr), R2

+)

+)}

R1 0 101 1e12

C1 0 101 1

BGabs 0 101 I={IF(TIME<.1p,0,100*abs(I(VMON)))}
VMON 1 2 DC 0V

.ends nlr PS 04

Note that unlike the subcircuit netlist of Figure 4.1, this subcircuit does not contain a
“Params:” block in the “.SUBCKT” line. Thus, the parameters R0, R1 and E1 have no
default value, and those parameters MUST be specified explicitly in the subcircuit instan-
tiation or given a value in a .PARAM statement.

Fortunately, we have done exactly that in our top-level schematic. Now that we have the
low-level schematic we can run gnetlist on “nlrcs10.sch” to obtain:

* gnetlist -o nlrcs10.cir -g spice-sdb nlrcs10.sch

* Spice file generated by gnetlist *

* spice-sdb version 4.28.2007 by SDB -- *

* provides advanced spice netlisting capability. *

* Documentation at http://www.brorson.com/gEDA/SPICE/ *

*vvvvvvvv Included SPICE model from nlr PS 04.cir vvvvvvvv

* Begin .SUBCKT model *

* spice-sdb ver 4.28.2007 *

.SUBCKT nlr PS 04 1 3

*============== Begin SPICE netlist of main design ============

.PARAM E2 = {2*E1}

49

.PARAM delr = {R1-R0}

.PARAM k1 = {1/E1**2}

.PARAM r2 = {R0+sqrt(2)*delr}

.func Rreg1(a,b,c,d) {a +(b-a)*c/d}

.Func Rreg2(a,b,c,d,f) {a+sqrt(2-b*(2*c-d)**2)*f}

BEnlr 2 3 V = {I(Vmon) * IF(

+ V(101) < E1, Rreg1(R0,R1,V(101),E1),

+ IF(

+ V(101) < E2, Rreg2(R0,k1,E1,V(101),delr), R2

+)

+)}

R1 0 101 1e12

C1 0 101 1

BGabs 0 101 I={IF(TIME<.1p,0,100*abs(I(VMON)))}
VMON 1 2 DC 0V

.ends nlr PS 04

*^^^^^^^^ End of included SPICE model from nlr PS 04.cir ^^^^^^^^

*

*============== Begin SPICE netlist of main design ============

.options timeint reltol=1e-6 maxord=2

.print tran v(1) v(2) v(3)

.tran 10us 10ms

Xnlr1 3 0 nlr PS 04 R0=0.15 E1=4 R1=6

R1 2a 3 4

VMON 2 2a DC 0V

L1 1 2 15mH IC=0A

C1 1 0 400uF IC=400V

.end

With the exception of the “PARAMS:” block in the subcircuit definition and the absence of
a “PARAMS:” keyword in the subcircuit instantiation line, this can be seen to be the same
as the circuit in Figure 4.1.

But what if we want to use this nonlinear resistor in a lot of different places of our circuit,
and want there to be a default value for the three parameters? Normally, in Xyce we
would specify these defaults in the .SUBCKT definition, and they would be applied if the
subcircuit were instantiated without any parameters being set. This workaround does not
allow that mechanism.

The workaround would be to create .PARAM statements at the top level of the schematic
that sets R0, R1, and E1 to their default values. Any X line that instantiates the “nlr PS 04”
subcircuit without specifying parameters would use those values. Any X line that does

50

specify the parameters would override the defaults.

This is not a very pretty way to set parameter defaults, as it peppers the top-level design
with .param statements setting default values for the lower level design, but it does work,
and requires no modifications to spice-sdb.

In summary:

� It is possible to work around the inability of spice-sdb to create advanced .subckt
definitions with Xyce’s “PARAMS:” block simply by passing parameters to the subcir-
cuit without the “PARAMS:” keyword, and doing without the subcircuit’s declaration
of default parameter values.

� Xyce-specific statements such as .FUNC or .PARAM can be pushed into a netlist
simply by adding spice-directive symbols.

� It is possible to push default values to the subcircuit using .PARAM statements in
spice-directive symbols.

� It is not strictly necessary to generate custom symbols for every subcircuit design if
an existing symbol can be pressed into service simply by changing its attributes.

� While no special symbol exists for Xyce (or SPICE) B source (behavioral modeling
source), existing voltage source symbols can be used just by changing their refdes
attribute, and by specifying the entire behavioral modeling expression as the voltage
source’s value attribute.

Patching spice-sdb, and an improved Xyce
nonlinear resistor schematic
Fortunately, gEDA users have recognized a need for the spice-sdb gnetlist backend to
allow augmentation of the .SUBCKT line just as Xyce would need. As a result, one user
has submitted a bug report to the gEDA issue tracker that contains a simple patch to
spice-sdb that does just that.

The issue report at https://bugs.launchpad.net/geda/+bug/698736 asks for exactly
this feature, and has attached to it a patch that provides it. The patch modifies only
the spice-sdb file, and does not require recompiling any of the gEDA suite. If you do not
know how to apply patches to files, or if you do not want to modify your installation of
gEDA, you can consider this section optional material.

Once applied, the patch allows any text in the “value” attribute of a “spice-subcircuit-LL”
symbol to be tacked on to the end of the .subckt line generated by gnetlist. We can then

51

https://bugs.launchpad.net/geda/+bug/698736

use almost the same schematic that we did before for the nlr PS 04 schematic, but add
a “value” attribute with the text “PARAMS: R0=0.1 E1=2 R1=3” to the spice-subcircuit-LL
symbol. It will appear as in Figure 4.4.

Figure 4.4. Nonlinear Resistor Subcircuit Schematic

In the top-level schematic, the only thing we will do is modify the Xnlr1 model-name so
that it has the keyword “PARAMS:” in between the actual model name and the parameter
specifications. It will appear as in Figure 4.5.

Everything else remains the same, but now the default values for the subcircuit parame-
ters are specified in the subcircuit schematic and subcircuit definition in the netlist directly,
rather than hacked in with .PARAM statements at top level. This subcircuit is somewhat
more reusable than before.

The netlisted version of the subcircuit is exactly as expected:

* Begin .SUBCKT model *

52

Figure 4.5. Nonlinear Resistor Top-Level Schematic

53

* spice-sdb ver 4.28.2007 *

.SUBCKT nlr PS 04 1 3 PARAMS: R0=0.1 E1=2 R1=3

*============== Begin SPICE netlist of main design ============

.PARAM E2 = {2*E1}

.PARAM delr = {R1-R0}

.PARAM k1 = {1/E1**2}

.PARAM r2 = {R0+sqrt(2)*delr}

.func Rreg1(a,b,c,d) {a +(b-a)*c/d}

.Func Rreg2(a,b,c,d,f) {a+sqrt(2-b*(2*c-d)**2)*f}

BEnlr 2 3 V = {I(Vmon) * IF(

+ V(101) < E1, Rreg1(R0,R1,V(101),E1),

+ IF(

+ V(101) < E2, Rreg2(R0,k1,E1,V(101),delr), R2

+)

+)}

R1 0 101 1e12

C1 0 101 1

BGabs 0 101 I={IF(TIME<.1p,0,100*abs(I(VMON)))}
VMON 1 2 DC 0V

.ends nlr PS 04

From this, it is clear that the patch does indeed make gnetlist more easily able to create
Xyce netlists with Xyce subcircuit extensions. It is hoped that the patch will soon become
an official part of the spice-sdb distribution.

54

A Installing gEDA on Windows

Like Xyce, gEDA was conceived for and originally written to support Unix-like operating
systems including Linux and Mac. It is therefore not a perfect fit for Windows users, as it
retains the look and feel of the original targeted operating systems, and is not as simple
to install as most Windows programs.

Also like Xyce, the desirability of a Windows port has outweighed the difficulties, and ports
have been made. DJ Delorie, a gEDA developer, has been providing pre-built packages
of gEDA utilities for several years, and these are the easiest to get going. Still, there are
several manual steps to take to get it running. The steps of this appendix need only be
completed once. After that, the software is just as usable on Windows as it is on other
operating systems, and all of the examples in this applications note will work exactly as
described.

Begin by visiting http://www.delorie.com/pcb/geda-windows/. You will find a link to
“snapshots”, ftp://ftp.delorie.com/pub/geda-windows/snapshots/. Click this link and
locate the files named “build-xxxxyyzz.zip” where xxxxyyzz is the date the file was cre-
ated. Choose the most recent date (which at the time of this writing was 20130508) and
download this zip file. Be patient, it is a large download and apparently a slow network
connection. This file contains everything you need to run gEDA on Windows.

Once the download is complete, double click its icon and extract the files to a new directory
(I had it extract to a “build-20130508” folder on my desktop).

When the extraction is complete, open the folder you just created and run the program
“geda-runtime.exe”. This program is an installer for certain DLLs that gEDA requires.

Next you must set three environment variables. From your desktop, click the Start button,
right-click the “Computer” item, and then choose “Properties,” as in Figure A.1

From the resulting window, choose “Advanced System Settings” and on the resulting “Sys-
tem Properties” window, click the “Environment Variables” button (Figure A.2).

The first environment variable you must set is PATH. This environment variable usually
exists already, so you will find it in the upper scrolling box. Select this variable and click
the “Edit...” button. Add the complete path to the “bin” folder of your extracted gEDA
build. To find the complete path, open the folder in the explorer, then right click on its
name in the explorer window and choose “Copy Address as Text”. DO NOT OVERWRITE
THE EXISTING VALUE OF PATH. This variable is very important, and if you replace its
existing value with your new text you could cause problems on your system. Add your
new text by clicking at the beginning of the existing text, pasting the text you just copied,
and then adding a semicolon to separate your new text from the previous contents. When
you are sure you have done this correctly, click the “OK” button.

55

http://www.delorie.com/pcb/geda-windows/
ftp://ftp.delorie.com/pub/geda-windows/snapshots/

Figure A.1. Selecting Computer Properties

The next two environment variables you need will not exist yet, so you have to click “New...”
for them.

Create one new environment variable called “GUILE LOAD PATH” and give it the full path
to the “share\guile\1.8” subfolder of your build folder. Again, the easiest way to get this
complete path is to open that folder in the explorer and then right-click in the location
name at the top, selecting “Copy Address as Text.” (Figure A.3) Paste this address into
the dialog box as the value of the variable.

Finally, add an environment variable called “GEDADATA” and give it the full path to the
“share\gEDA” subfolder of your build folder.

Once you have created these environment variables, you have only one step left. The
“gdk” system shipped in these builds does not come with a “loaders.cache” file that all of
the programs require, so it is necessary to create one. Open a terminal window: click the
start menu and type “cmd” into the “search programs and files” box, then click “cmd.exe.”
(Alternatively, if you are a Sandia customer and have installed one of Sandia’s Xyce bi-
naries for Windows, you can just double-click the “Xyce Command Prompt” icon.) Next,
navigate to the folder “lib\gdk-pixbuf-2.0\2.10.0” of your build folder with the “cd” com-
mand (see example in Figure A.4). Enter the following command to create the loader
cache:

56

Figure A.2. Advanced System Settings

gdk-pixbuf-query-loaders > loaders.cache

Once you have completed the steps of extracting the build files, installing the geda-
runtime, adding the environment variables and initializing the loaders.cache file your in-
stallation is completed. gschem is now accessible both as a clickable program in the build-
xxxxxxxx\bin folder or from the command line by typing “gschem”. If you see a number of
error messages about not being able to find the “loaders.conf” file, double check that you
have created it as described above, and that it is in the correct directory.

gnetlist, like Xyce itself, is only usable from the command line. Its command line syntax
on Windows is identical to its command line syntax on Unix-like systems, so the instruc-
tions in the main body of this application note will all work correctly.

57

Figure A.3. Copying the full path

58

Figure A.4. Navigate to the “lib\gdk-pixbuf-2.0\2.10.0” di-
rectory

59

References

[1] Eric R. Keiter, Ting Mei, Thomas V. Russo, Eric L. Rankin, Richard L. Schiek, Heidi K.
Thornquist, Jason C. Verley, Deborah A. Fixel, Roger P. Pawlowski, and Keith R.
Santarelli. Xyce parallel electronic simulator: User’s guide, version 6.0. Technical
Report SAND2013-WWWW, Sandia National Laboratories, Albuquerque, NM, 2013.

[2] H. Ward Silver. Hands-on radio experiment 83. QST, 93(12), 2009.

[3] H. Ward Silver. Hands-on radio experiment 84. QST, 94(01), 2010.

[4] H. Ward Silver. Hands-on radio experiment 85. QST, 94(02), 2010.

[5] H. Ward Silver. Hands-On Radio Experiments Volume 2. The American Radio Relay
League, Inc., 2013.

60

DISTRIBUTION:

1 MS 0899 Technical Library, 9536 (electronic copy)

61

62

v1.38

	Introduction
	Target Audience
	Prerequisites
	Obtaining gEDA and friends
	Simplified installation on Ubuntu, Debian, Mac OS X and FreeBSD
	gEDA on CentOS and Red Hat Enterprise Linux
	gEDA on Windows
	Useful start-up options
	Starting gschem

	A first circuit with gEDA and Xyce
	Overview
	Drawing the circuit
	Adding voltage sources and editing attributes
	Adding devices
	Connecting the devices
	Completing the schematic
	Adding a Model Card

	Generating the netlist
	Adding analysis and output statements

	Simulation with Xyce
	Plotting the results
	Changing the analysis
	Summary

	Creating hierarchical designs
	The Common Emitter Amplifier --- flat design
	Common Emitter Amplifier --- hierarchical netlist version
	Overview
	The Common Emitter Amplifier subcircuit
	Creating a symbol for the subcircuit
	Drawing the higher level schematic
	Summary

	Accessing Xyce-specific Netlist Features
	The Nonlinear Resistor Netlist
	The nonlinear resistor schematic --- workaround version
	Patching spice-sdb, and an improved Xyce nonlinear resistor schematic
	Installing gEDA on Windows

